Metamath Proof Explorer


Theorem div4p1lem1div2

Description: An integer greater than 5, divided by 4 and increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021)

Ref Expression
Assertion div4p1lem1div2 N 6 N N 4 + 1 N 1 2

Proof

Step Hyp Ref Expression
1 6re 6
2 1 a1i N 6
3 id N N
4 2 3 3 leadd2d N 6 N N + 6 N + N
5 4 biimpa N 6 N N + 6 N + N
6 recn N N
7 6 times2d N N 2 = N + N
8 7 adantr N 6 N N 2 = N + N
9 5 8 breqtrrd N 6 N N + 6 N 2
10 4cn 4
11 10 a1i N 4
12 2cn 2
13 12 a1i N 2
14 6 11 13 addassd N N + 4 + 2 = N + 4 + 2
15 4p2e6 4 + 2 = 6
16 15 oveq2i N + 4 + 2 = N + 6
17 14 16 eqtrdi N N + 4 + 2 = N + 6
18 17 breq1d N N + 4 + 2 N 2 N + 6 N 2
19 18 adantr N 6 N N + 4 + 2 N 2 N + 6 N 2
20 9 19 mpbird N 6 N N + 4 + 2 N 2
21 4re 4
22 21 a1i N 4
23 4ne0 4 0
24 23 a1i N 4 0
25 3 22 24 redivcld N N 4
26 peano2re N 4 N 4 + 1
27 25 26 syl N N 4 + 1
28 peano2rem N N 1
29 28 rehalfcld N N 1 2
30 4pos 0 < 4
31 21 30 pm3.2i 4 0 < 4
32 31 a1i N 4 0 < 4
33 lemul1 N 4 + 1 N 1 2 4 0 < 4 N 4 + 1 N 1 2 N 4 + 1 4 N 1 2 4
34 27 29 32 33 syl3anc N N 4 + 1 N 1 2 N 4 + 1 4 N 1 2 4
35 25 recnd N N 4
36 1cnd N 1
37 6 11 24 divcan1d N N 4 4 = N
38 10 mulid2i 1 4 = 4
39 38 a1i N 1 4 = 4
40 37 39 oveq12d N N 4 4 + 1 4 = N + 4
41 35 11 36 40 joinlmuladdmuld N N 4 + 1 4 = N + 4
42 2t2e4 2 2 = 4
43 42 eqcomi 4 = 2 2
44 43 a1i N 4 = 2 2
45 44 oveq2d N N 1 2 4 = N 1 2 2 2
46 29 recnd N N 1 2
47 mulass N 1 2 2 2 N 1 2 2 2 = N 1 2 2 2
48 47 eqcomd N 1 2 2 2 N 1 2 2 2 = N 1 2 2 2
49 46 13 13 48 syl3anc N N 1 2 2 2 = N 1 2 2 2
50 28 recnd N N 1
51 2ne0 2 0
52 51 a1i N 2 0
53 50 13 52 divcan1d N N 1 2 2 = N 1
54 53 oveq1d N N 1 2 2 2 = N 1 2
55 6 36 13 subdird N N 1 2 = N 2 1 2
56 12 mulid2i 1 2 = 2
57 56 a1i N 1 2 = 2
58 57 oveq2d N N 2 1 2 = N 2 2
59 54 55 58 3eqtrd N N 1 2 2 2 = N 2 2
60 45 49 59 3eqtrd N N 1 2 4 = N 2 2
61 41 60 breq12d N N 4 + 1 4 N 1 2 4 N + 4 N 2 2
62 3 22 readdcld N N + 4
63 2re 2
64 63 a1i N 2
65 3 64 remulcld N N 2
66 leaddsub N + 4 2 N 2 N + 4 + 2 N 2 N + 4 N 2 2
67 66 bicomd N + 4 2 N 2 N + 4 N 2 2 N + 4 + 2 N 2
68 62 64 65 67 syl3anc N N + 4 N 2 2 N + 4 + 2 N 2
69 34 61 68 3bitrd N N 4 + 1 N 1 2 N + 4 + 2 N 2
70 69 adantr N 6 N N 4 + 1 N 1 2 N + 4 + 2 N 2
71 20 70 mpbird N 6 N N 4 + 1 N 1 2