Metamath Proof Explorer


Theorem divadddiv

Description: Addition of two ratios. Theorem I.13 of Apostol p. 18. (Contributed by NM, 1-Aug-2004) (Revised by Mario Carneiro, 2-May-2016)

Ref Expression
Assertion divadddiv A B C C 0 D D 0 A C + B D = A D + B C C D

Proof

Step Hyp Ref Expression
1 mulcl A D A D
2 1 ad2ant2r A B D D 0 A D
3 2 adantrl A B C C 0 D D 0 A D
4 mulcl B C B C
5 4 adantrr B C C 0 B C
6 5 ad2ant2lr A B C C 0 D D 0 B C
7 mulcl C D C D
8 7 ad2ant2r C C 0 D D 0 C D
9 mulne0 C C 0 D D 0 C D 0
10 8 9 jca C C 0 D D 0 C D C D 0
11 10 adantl A B C C 0 D D 0 C D C D 0
12 divdir A D B C C D C D 0 A D + B C C D = A D C D + B C C D
13 3 6 11 12 syl3anc A B C C 0 D D 0 A D + B C C D = A D C D + B C C D
14 simpll A B C C 0 D D 0 A
15 simprr A B C C 0 D D 0 D D 0
16 15 simpld A B C C 0 D D 0 D
17 14 16 mulcomd A B C C 0 D D 0 A D = D A
18 simprll A B C C 0 D D 0 C
19 18 16 mulcomd A B C C 0 D D 0 C D = D C
20 17 19 oveq12d A B C C 0 D D 0 A D C D = D A D C
21 simprl A B C C 0 D D 0 C C 0
22 divcan5 A C C 0 D D 0 D A D C = A C
23 14 21 15 22 syl3anc A B C C 0 D D 0 D A D C = A C
24 20 23 eqtrd A B C C 0 D D 0 A D C D = A C
25 simplr A B C C 0 D D 0 B
26 25 18 mulcomd A B C C 0 D D 0 B C = C B
27 26 oveq1d A B C C 0 D D 0 B C C D = C B C D
28 divcan5 B D D 0 C C 0 C B C D = B D
29 25 15 21 28 syl3anc A B C C 0 D D 0 C B C D = B D
30 27 29 eqtrd A B C C 0 D D 0 B C C D = B D
31 24 30 oveq12d A B C C 0 D D 0 A D C D + B C C D = A C + B D
32 13 31 eqtr2d A B C C 0 D D 0 A C + B D = A D + B C C D