Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
divadddivi
Next ⟩
divdivdivi
Metamath Proof Explorer
Ascii
Unicode
Theorem
divadddivi
Description:
Addition of two ratios. Theorem I.13 of
Apostol
p. 18.
(Contributed by
NM
, 21-Feb-1995)
Ref
Expression
Hypotheses
divclz.1
⊢
A
∈
ℂ
divclz.2
⊢
B
∈
ℂ
divmulz.3
⊢
C
∈
ℂ
divmuldiv.4
⊢
D
∈
ℂ
divmuldiv.5
⊢
B
≠
0
divmuldiv.6
⊢
D
≠
0
Assertion
divadddivi
⊢
A
B
+
C
D
=
A
⁢
D
+
C
⁢
B
B
⁢
D
Proof
Step
Hyp
Ref
Expression
1
divclz.1
⊢
A
∈
ℂ
2
divclz.2
⊢
B
∈
ℂ
3
divmulz.3
⊢
C
∈
ℂ
4
divmuldiv.4
⊢
D
∈
ℂ
5
divmuldiv.5
⊢
B
≠
0
6
divmuldiv.6
⊢
D
≠
0
7
2
5
pm3.2i
⊢
B
∈
ℂ
∧
B
≠
0
8
4
6
pm3.2i
⊢
D
∈
ℂ
∧
D
≠
0
9
divadddiv
⊢
A
∈
ℂ
∧
C
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
∧
D
∈
ℂ
∧
D
≠
0
→
A
B
+
C
D
=
A
⁢
D
+
C
⁢
B
B
⁢
D
10
1
3
7
8
9
mp4an
⊢
A
B
+
C
D
=
A
⁢
D
+
C
⁢
B
B
⁢
D