Metamath Proof Explorer


Theorem divadddivi

Description: Addition of two ratios. Theorem I.13 of Apostol p. 18. (Contributed by NM, 21-Feb-1995)

Ref Expression
Hypotheses divclz.1 A
divclz.2 B
divmulz.3 C
divmuldiv.4 D
divmuldiv.5 B 0
divmuldiv.6 D 0
Assertion divadddivi A B + C D = A D + C B B D

Proof

Step Hyp Ref Expression
1 divclz.1 A
2 divclz.2 B
3 divmulz.3 C
4 divmuldiv.4 D
5 divmuldiv.5 B 0
6 divmuldiv.6 D 0
7 2 5 pm3.2i B B 0
8 4 6 pm3.2i D D 0
9 divadddiv A C B B 0 D D 0 A B + C D = A D + C B B D
10 1 3 7 8 9 mp4an A B + C D = A D + C B B D