| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-3an |  | 
						
							| 2 | 1 | rexbii |  | 
						
							| 3 |  | r19.42v |  | 
						
							| 4 | 2 3 | bitri |  | 
						
							| 5 |  | zsubcl |  | 
						
							| 6 |  | divides |  | 
						
							| 7 | 5 6 | sylan2 |  | 
						
							| 8 | 7 | 3impb |  | 
						
							| 9 | 8 | 3com12 |  | 
						
							| 10 |  | zcn |  | 
						
							| 11 |  | zcn |  | 
						
							| 12 |  | zmulcl |  | 
						
							| 13 | 12 | zcnd |  | 
						
							| 14 |  | subadd |  | 
						
							| 15 | 10 11 13 14 | syl3an |  | 
						
							| 16 |  | addcom |  | 
						
							| 17 | 11 13 16 | syl2an |  | 
						
							| 18 | 17 | 3adant1 |  | 
						
							| 19 | 18 | eqeq1d |  | 
						
							| 20 | 15 19 | bitrd |  | 
						
							| 21 |  | eqcom |  | 
						
							| 22 |  | eqcom |  | 
						
							| 23 | 20 21 22 | 3bitr3g |  | 
						
							| 24 | 23 | 3expia |  | 
						
							| 25 | 24 | expcomd |  | 
						
							| 26 | 25 | 3impia |  | 
						
							| 27 | 26 | imp |  | 
						
							| 28 | 27 | rexbidva |  | 
						
							| 29 | 28 | 3com23 |  | 
						
							| 30 | 9 29 | bitrd |  | 
						
							| 31 | 30 | anbi2d |  | 
						
							| 32 | 4 31 | bitr4id |  | 
						
							| 33 |  | anass |  | 
						
							| 34 | 32 33 | bitrdi |  | 
						
							| 35 | 34 | 3expa |  | 
						
							| 36 | 35 | reubidva |  | 
						
							| 37 |  | elnn0z |  | 
						
							| 38 | 37 | anbi1i |  | 
						
							| 39 |  | anass |  | 
						
							| 40 | 38 39 | bitri |  | 
						
							| 41 | 40 | eubii |  | 
						
							| 42 |  | df-reu |  | 
						
							| 43 |  | df-reu |  | 
						
							| 44 | 41 42 43 | 3bitr4ri |  | 
						
							| 45 | 36 44 | bitrdi |  | 
						
							| 46 | 45 | 3adant3 |  |