Metamath Proof Explorer


Theorem divalgb

Description: Express the division algorithm as stated in divalg in terms of || . (Contributed by Paul Chapman, 31-Mar-2011)

Ref Expression
Assertion divalgb N D D 0 ∃! r q 0 r r < D N = q D + r ∃! r 0 r < D D N r

Proof

Step Hyp Ref Expression
1 zsubcl N r N r
2 divides D N r D N r q q D = N r
3 1 2 sylan2 D N r D N r q q D = N r
4 3 3impb D N r D N r q q D = N r
5 4 3com12 N D r D N r q q D = N r
6 zcn N N
7 zcn r r
8 zmulcl q D q D
9 8 zcnd q D q D
10 subadd N r q D N r = q D r + q D = N
11 6 7 9 10 syl3an N r q D N r = q D r + q D = N
12 addcom r q D r + q D = q D + r
13 7 9 12 syl2an r q D r + q D = q D + r
14 13 3adant1 N r q D r + q D = q D + r
15 14 eqeq1d N r q D r + q D = N q D + r = N
16 11 15 bitrd N r q D N r = q D q D + r = N
17 eqcom N r = q D q D = N r
18 eqcom q D + r = N N = q D + r
19 16 17 18 3bitr3g N r q D q D = N r N = q D + r
20 19 3expia N r q D q D = N r N = q D + r
21 20 expcomd N r D q q D = N r N = q D + r
22 21 3impia N r D q q D = N r N = q D + r
23 22 imp N r D q q D = N r N = q D + r
24 23 rexbidva N r D q q D = N r q N = q D + r
25 24 3com23 N D r q q D = N r q N = q D + r
26 5 25 bitrd N D r D N r q N = q D + r
27 26 anbi2d N D r 0 r r < D D N r 0 r r < D q N = q D + r
28 df-3an 0 r r < D N = q D + r 0 r r < D N = q D + r
29 28 rexbii q 0 r r < D N = q D + r q 0 r r < D N = q D + r
30 r19.42v q 0 r r < D N = q D + r 0 r r < D q N = q D + r
31 29 30 bitri q 0 r r < D N = q D + r 0 r r < D q N = q D + r
32 27 31 syl6rbbr N D r q 0 r r < D N = q D + r 0 r r < D D N r
33 anass 0 r r < D D N r 0 r r < D D N r
34 32 33 syl6bb N D r q 0 r r < D N = q D + r 0 r r < D D N r
35 34 3expa N D r q 0 r r < D N = q D + r 0 r r < D D N r
36 35 reubidva N D ∃! r q 0 r r < D N = q D + r ∃! r 0 r r < D D N r
37 elnn0z r 0 r 0 r
38 37 anbi1i r 0 r < D D N r r 0 r r < D D N r
39 anass r 0 r r < D D N r r 0 r r < D D N r
40 38 39 bitri r 0 r < D D N r r 0 r r < D D N r
41 40 eubii ∃! r r 0 r < D D N r ∃! r r 0 r r < D D N r
42 df-reu ∃! r 0 r < D D N r ∃! r r 0 r < D D N r
43 df-reu ∃! r 0 r r < D D N r ∃! r r 0 r r < D D N r
44 41 42 43 3bitr4ri ∃! r 0 r r < D D N r ∃! r 0 r < D D N r
45 36 44 syl6bb N D ∃! r q 0 r r < D N = q D + r ∃! r 0 r < D D N r
46 45 3adant3 N D D 0 ∃! r q 0 r r < D N = q D + r ∃! r 0 r < D D N r