Step |
Hyp |
Ref |
Expression |
1 |
|
df-3an |
|
2 |
1
|
rexbii |
|
3 |
|
r19.42v |
|
4 |
2 3
|
bitri |
|
5 |
|
zsubcl |
|
6 |
|
divides |
|
7 |
5 6
|
sylan2 |
|
8 |
7
|
3impb |
|
9 |
8
|
3com12 |
|
10 |
|
zcn |
|
11 |
|
zcn |
|
12 |
|
zmulcl |
|
13 |
12
|
zcnd |
|
14 |
|
subadd |
|
15 |
10 11 13 14
|
syl3an |
|
16 |
|
addcom |
|
17 |
11 13 16
|
syl2an |
|
18 |
17
|
3adant1 |
|
19 |
18
|
eqeq1d |
|
20 |
15 19
|
bitrd |
|
21 |
|
eqcom |
|
22 |
|
eqcom |
|
23 |
20 21 22
|
3bitr3g |
|
24 |
23
|
3expia |
|
25 |
24
|
expcomd |
|
26 |
25
|
3impia |
|
27 |
26
|
imp |
|
28 |
27
|
rexbidva |
|
29 |
28
|
3com23 |
|
30 |
9 29
|
bitrd |
|
31 |
30
|
anbi2d |
|
32 |
4 31
|
bitr4id |
|
33 |
|
anass |
|
34 |
32 33
|
bitrdi |
|
35 |
34
|
3expa |
|
36 |
35
|
reubidva |
|
37 |
|
elnn0z |
|
38 |
37
|
anbi1i |
|
39 |
|
anass |
|
40 |
38 39
|
bitri |
|
41 |
40
|
eubii |
|
42 |
|
df-reu |
|
43 |
|
df-reu |
|
44 |
41 42 43
|
3bitr4ri |
|
45 |
36 44
|
bitrdi |
|
46 |
45
|
3adant3 |
|