Metamath Proof Explorer


Theorem divalglem0

Description: Lemma for divalg . (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Hypotheses divalglem0.1 N
divalglem0.2 D
Assertion divalglem0 R K D N R D N R K D

Proof

Step Hyp Ref Expression
1 divalglem0.1 N
2 divalglem0.2 D
3 iddvds D D D
4 dvdsabsb D D D D D D
5 4 anidms D D D D D
6 3 5 mpbid D D D
7 2 6 ax-mp D D
8 nn0abscl D D 0
9 2 8 ax-mp D 0
10 9 nn0zi D
11 dvdsmultr2 D K D D D D K D
12 2 10 11 mp3an13 K D D D K D
13 7 12 mpi K D K D
14 13 adantl R K D K D
15 zsubcl N R N R
16 1 15 mpan R N R
17 zmulcl K D K D
18 10 17 mpan2 K K D
19 dvds2add D N R K D D N R D K D D N - R + K D
20 2 16 18 19 mp3an3an R K D N R D K D D N - R + K D
21 14 20 mpan2d R K D N R D N - R + K D
22 zcn N N
23 1 22 ax-mp N
24 zcn R R
25 18 zcnd K K D
26 subsub N R K D N R K D = N - R + K D
27 23 24 25 26 mp3an3an R K N R K D = N - R + K D
28 27 breq2d R K D N R K D D N - R + K D
29 21 28 sylibrd R K D N R D N R K D