Metamath Proof Explorer


Theorem divalglem1

Description: Lemma for divalg . (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Hypotheses divalglem0.1 N
divalglem0.2 D
divalglem1.3 D 0
Assertion divalglem1 0 N + N D

Proof

Step Hyp Ref Expression
1 divalglem0.1 N
2 divalglem0.2 D
3 divalglem1.3 D 0
4 1 zrei N
5 0re 0
6 4 5 letrii N 0 0 N
7 nnabscl D D 0 D
8 2 3 7 mp2an D
9 nnge1 D 1 D
10 8 9 ax-mp 1 D
11 le0neg1 N N 0 0 N
12 4 11 ax-mp N 0 0 N
13 4 renegcli N
14 2 zrei D
15 14 recni D
16 15 abscli D
17 lemulge11 N D 0 N 1 D N -N D
18 13 16 17 mpanl12 0 N 1 D N -N D
19 12 18 sylanb N 0 1 D N -N D
20 10 19 mpan2 N 0 N -N D
21 4 recni N
22 21 15 absmuli N D = N D
23 4 absnidi N 0 N = N
24 23 oveq1d N 0 N D = -N D
25 22 24 eqtrid N 0 N D = -N D
26 20 25 breqtrrd N 0 N N D
27 le0neg2 N 0 N N 0
28 4 27 ax-mp 0 N N 0
29 4 14 remulcli N D
30 29 recni N D
31 30 absge0i 0 N D
32 30 abscli N D
33 13 5 32 letri N 0 0 N D N N D
34 31 33 mpan2 N 0 N N D
35 28 34 sylbi 0 N N N D
36 26 35 jaoi N 0 0 N N N D
37 6 36 ax-mp N N D
38 df-neg N = 0 N
39 38 breq1i N N D 0 N N D
40 5 4 32 lesubadd2i 0 N N D 0 N + N D
41 39 40 bitri N N D 0 N + N D
42 37 41 mpbi 0 N + N D