Metamath Proof Explorer


Theorem divalglem2

Description: Lemma for divalg . (Contributed by Paul Chapman, 21-Mar-2011) (Revised by AV, 2-Oct-2020)

Ref Expression
Hypotheses divalglem0.1 N
divalglem0.2 D
divalglem1.3 D 0
divalglem2.4 S = r 0 | D N r
Assertion divalglem2 sup S < S

Proof

Step Hyp Ref Expression
1 divalglem0.1 N
2 divalglem0.2 D
3 divalglem1.3 D 0
4 divalglem2.4 S = r 0 | D N r
5 4 ssrab3 S 0
6 nn0uz 0 = 0
7 5 6 sseqtri S 0
8 zmulcl N D N D
9 1 2 8 mp2an N D
10 nn0abscl N D N D 0
11 9 10 ax-mp N D 0
12 11 nn0zi N D
13 zaddcl N N D N + N D
14 1 12 13 mp2an N + N D
15 1 2 3 divalglem1 0 N + N D
16 elnn0z N + N D 0 N + N D 0 N + N D
17 14 15 16 mpbir2an N + N D 0
18 iddvds D D D
19 dvdsabsb D D D D D D
20 19 anidms D D D D D
21 18 20 mpbid D D D
22 2 21 ax-mp D D
23 nn0abscl N N 0
24 1 23 ax-mp N 0
25 24 nn0negzi N
26 nn0abscl D D 0
27 2 26 ax-mp D 0
28 27 nn0zi D
29 dvdsmultr2 D N D D D D N D
30 2 25 28 29 mp3an D D D N D
31 22 30 ax-mp D N D
32 zcn N N
33 1 32 ax-mp N
34 zcn D D
35 2 34 ax-mp D
36 33 35 absmuli N D = N D
37 36 negeqi N D = N D
38 df-neg N D = 0 N D
39 33 subidi N N = 0
40 39 oveq1i N - N - N D = 0 N D
41 11 nn0cni N D
42 subsub4 N N N D N - N - N D = N N + N D
43 33 33 41 42 mp3an N - N - N D = N N + N D
44 38 40 43 3eqtr2ri N N + N D = N D
45 33 abscli N
46 45 recni N
47 35 abscli D
48 47 recni D
49 46 48 mulneg1i N D = N D
50 37 44 49 3eqtr4i N N + N D = N D
51 31 50 breqtrri D N N + N D
52 oveq2 r = N + N D N r = N N + N D
53 52 breq2d r = N + N D D N r D N N + N D
54 53 4 elrab2 N + N D S N + N D 0 D N N + N D
55 17 51 54 mpbir2an N + N D S
56 55 ne0ii S
57 infssuzcl S 0 S sup S < S
58 7 56 57 mp2an sup S < S