Step |
Hyp |
Ref |
Expression |
1 |
|
divalglem0.1 |
|
2 |
|
divalglem0.2 |
|
3 |
|
divalglem1.3 |
|
4 |
|
divalglem2.4 |
|
5 |
|
divalglem5.5 |
|
6 |
1 2 3 4
|
divalglem2 |
|
7 |
5 6
|
eqeltri |
|
8 |
|
oveq2 |
|
9 |
8
|
breq2d |
|
10 |
|
oveq2 |
|
11 |
10
|
breq2d |
|
12 |
11
|
cbvrabv |
|
13 |
4 12
|
eqtri |
|
14 |
9 13
|
elrab2 |
|
15 |
7 14
|
mpbi |
|
16 |
15
|
simpli |
|
17 |
16
|
nn0ge0i |
|
18 |
|
nnabscl |
|
19 |
2 3 18
|
mp2an |
|
20 |
19
|
nngt0i |
|
21 |
|
0re |
|
22 |
|
zcn |
|
23 |
2 22
|
ax-mp |
|
24 |
23
|
abscli |
|
25 |
21 24
|
ltnlei |
|
26 |
20 25
|
mpbi |
|
27 |
4
|
ssrab3 |
|
28 |
|
nn0uz |
|
29 |
27 28
|
sseqtri |
|
30 |
|
nn0abscl |
|
31 |
2 30
|
ax-mp |
|
32 |
|
nn0sub2 |
|
33 |
31 16 32
|
mp3an12 |
|
34 |
15
|
a1i |
|
35 |
|
nn0z |
|
36 |
|
1z |
|
37 |
1 2
|
divalglem0 |
|
38 |
36 37
|
mpan2 |
|
39 |
24
|
recni |
|
40 |
39
|
mulid2i |
|
41 |
40
|
oveq2i |
|
42 |
41
|
oveq2i |
|
43 |
42
|
breq2i |
|
44 |
38 43
|
syl6ib |
|
45 |
35 44
|
syl |
|
46 |
45
|
imp |
|
47 |
34 46
|
syl |
|
48 |
|
oveq2 |
|
49 |
48
|
breq2d |
|
50 |
49 13
|
elrab2 |
|
51 |
33 47 50
|
sylanbrc |
|
52 |
|
infssuzle |
|
53 |
29 51 52
|
sylancr |
|
54 |
5 53
|
eqbrtrid |
|
55 |
34
|
simpld |
|
56 |
55
|
nn0red |
|
57 |
|
lesub |
|
58 |
24 57
|
mp3an3 |
|
59 |
56 56 58
|
syl2anc |
|
60 |
56
|
recnd |
|
61 |
60
|
subidd |
|
62 |
61
|
breq2d |
|
63 |
59 62
|
bitrd |
|
64 |
54 63
|
mpbid |
|
65 |
26 64
|
mto |
|
66 |
16
|
nn0rei |
|
67 |
66 24
|
ltnlei |
|
68 |
65 67
|
mpbir |
|
69 |
17 68
|
pm3.2i |
|