Metamath Proof Explorer


Theorem divalglem5

Description: Lemma for divalg . (Contributed by Paul Chapman, 21-Mar-2011) (Revised by AV, 2-Oct-2020)

Ref Expression
Hypotheses divalglem0.1 N
divalglem0.2 D
divalglem1.3 D 0
divalglem2.4 S = r 0 | D N r
divalglem5.5 R = sup S <
Assertion divalglem5 0 R R < D

Proof

Step Hyp Ref Expression
1 divalglem0.1 N
2 divalglem0.2 D
3 divalglem1.3 D 0
4 divalglem2.4 S = r 0 | D N r
5 divalglem5.5 R = sup S <
6 1 2 3 4 divalglem2 sup S < S
7 5 6 eqeltri R S
8 oveq2 x = R N x = N R
9 8 breq2d x = R D N x D N R
10 oveq2 r = x N r = N x
11 10 breq2d r = x D N r D N x
12 11 cbvrabv r 0 | D N r = x 0 | D N x
13 4 12 eqtri S = x 0 | D N x
14 9 13 elrab2 R S R 0 D N R
15 7 14 mpbi R 0 D N R
16 15 simpli R 0
17 16 nn0ge0i 0 R
18 nnabscl D D 0 D
19 2 3 18 mp2an D
20 19 nngt0i 0 < D
21 0re 0
22 zcn D D
23 2 22 ax-mp D
24 23 abscli D
25 21 24 ltnlei 0 < D ¬ D 0
26 20 25 mpbi ¬ D 0
27 4 ssrab3 S 0
28 nn0uz 0 = 0
29 27 28 sseqtri S 0
30 nn0abscl D D 0
31 2 30 ax-mp D 0
32 nn0sub2 D 0 R 0 D R R D 0
33 31 16 32 mp3an12 D R R D 0
34 15 a1i D R R 0 D N R
35 nn0z R 0 R
36 1z 1
37 1 2 divalglem0 R 1 D N R D N R 1 D
38 36 37 mpan2 R D N R D N R 1 D
39 24 recni D
40 39 mulid2i 1 D = D
41 40 oveq2i R 1 D = R D
42 41 oveq2i N R 1 D = N R D
43 42 breq2i D N R 1 D D N R D
44 38 43 syl6ib R D N R D N R D
45 35 44 syl R 0 D N R D N R D
46 45 imp R 0 D N R D N R D
47 34 46 syl D R D N R D
48 oveq2 x = R D N x = N R D
49 48 breq2d x = R D D N x D N R D
50 49 13 elrab2 R D S R D 0 D N R D
51 33 47 50 sylanbrc D R R D S
52 infssuzle S 0 R D S sup S < R D
53 29 51 52 sylancr D R sup S < R D
54 5 53 eqbrtrid D R R R D
55 34 simpld D R R 0
56 55 nn0red D R R
57 lesub R R D R R D D R R
58 24 57 mp3an3 R R R R D D R R
59 56 56 58 syl2anc D R R R D D R R
60 56 recnd D R R
61 60 subidd D R R R = 0
62 61 breq2d D R D R R D 0
63 59 62 bitrd D R R R D D 0
64 54 63 mpbid D R D 0
65 26 64 mto ¬ D R
66 16 nn0rei R
67 66 24 ltnlei R < D ¬ D R
68 65 67 mpbir R < D
69 17 68 pm3.2i 0 R R < D