Metamath Proof Explorer


Theorem divalglem6

Description: Lemma for divalg . (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Hypotheses divalglem6.1 A
divalglem6.2 X 0 A 1
divalglem6.3 K
Assertion divalglem6 K 0 ¬ X + K A 0 A 1

Proof

Step Hyp Ref Expression
1 divalglem6.1 A
2 divalglem6.2 X 0 A 1
3 divalglem6.3 K
4 3 zrei K
5 0re 0
6 4 5 lttri2i K 0 K < 0 0 < K
7 0z 0
8 1 nnzi A
9 elfzm11 0 A X 0 A 1 X 0 X X < A
10 7 8 9 mp2an X 0 A 1 X 0 X X < A
11 2 10 mpbi X 0 X X < A
12 11 simp3i X < A
13 11 simp1i X
14 13 zrei X
15 1 nnrei A
16 4 15 remulcli K A
17 14 15 16 ltadd1i X < A X + K A < A + K A
18 12 17 mpbi X + K A < A + K A
19 4 renegcli K
20 1 nnnn0i A 0
21 20 nn0ge0i 0 A
22 lemulge12 A K 0 A 1 K A K A
23 22 an4s A 0 A K 1 K A K A
24 15 21 23 mpanl12 K 1 K A K A
25 19 24 mpan 1 K A K A
26 lt0neg1 K K < 0 0 < K
27 4 26 ax-mp K < 0 0 < K
28 znegcl K K
29 3 28 ax-mp K
30 zltp1le 0 K 0 < K 0 + 1 K
31 7 29 30 mp2an 0 < K 0 + 1 K
32 0p1e1 0 + 1 = 1
33 32 breq1i 0 + 1 K 1 K
34 31 33 bitri 0 < K 1 K
35 27 34 bitri K < 0 1 K
36 4 recni K
37 15 recni A
38 36 37 mulneg1i K A = K A
39 38 oveq2i A K A = A K A
40 16 recni K A
41 37 40 subnegi A K A = A + K A
42 39 41 eqtri A K A = A + K A
43 42 breq1i A K A 0 A + K A 0
44 19 15 remulcli K A
45 suble0 A K A A K A 0 A K A
46 15 44 45 mp2an A K A 0 A K A
47 43 46 bitr3i A + K A 0 A K A
48 25 35 47 3imtr4i K < 0 A + K A 0
49 14 16 readdcli X + K A
50 15 16 readdcli A + K A
51 49 50 5 ltletri X + K A < A + K A A + K A 0 X + K A < 0
52 18 48 51 sylancr K < 0 X + K A < 0
53 49 5 ltnlei X + K A < 0 ¬ 0 X + K A
54 52 53 sylib K < 0 ¬ 0 X + K A
55 elfzle1 X + K A 0 A 1 0 X + K A
56 54 55 nsyl K < 0 ¬ X + K A 0 A 1
57 zltp1le 0 K 0 < K 0 + 1 K
58 7 3 57 mp2an 0 < K 0 + 1 K
59 32 breq1i 0 + 1 K 1 K
60 58 59 bitri 0 < K 1 K
61 lemulge12 A K 0 A 1 K A K A
62 15 4 61 mpanl12 0 A 1 K A K A
63 21 62 mpan 1 K A K A
64 60 63 sylbi 0 < K A K A
65 11 simp2i 0 X
66 addge02 K A X 0 X K A X + K A
67 16 14 66 mp2an 0 X K A X + K A
68 65 67 mpbi K A X + K A
69 15 16 49 letri A K A K A X + K A A X + K A
70 64 68 69 sylancl 0 < K A X + K A
71 15 49 lenlti A X + K A ¬ X + K A < A
72 70 71 sylib 0 < K ¬ X + K A < A
73 elfzm11 0 A X + K A 0 A 1 X + K A 0 X + K A X + K A < A
74 7 8 73 mp2an X + K A 0 A 1 X + K A 0 X + K A X + K A < A
75 74 simp3bi X + K A 0 A 1 X + K A < A
76 72 75 nsyl 0 < K ¬ X + K A 0 A 1
77 56 76 jaoi K < 0 0 < K ¬ X + K A 0 A 1
78 6 77 sylbi K 0 ¬ X + K A 0 A 1