Metamath Proof Explorer


Theorem divass

Description: An associative law for division. (Contributed by NM, 2-Aug-2004)

Ref Expression
Assertion divass A B C C 0 A B C = A B C

Proof

Step Hyp Ref Expression
1 reccl C C 0 1 C
2 mulass A B 1 C A B 1 C = A B 1 C
3 1 2 syl3an3 A B C C 0 A B 1 C = A B 1 C
4 mulcl A B A B
5 4 3adant3 A B C C 0 A B
6 simp3l A B C C 0 C
7 simp3r A B C C 0 C 0
8 divrec A B C C 0 A B C = A B 1 C
9 5 6 7 8 syl3anc A B C C 0 A B C = A B 1 C
10 simp2 A B C C 0 B
11 divrec B C C 0 B C = B 1 C
12 10 6 7 11 syl3anc A B C C 0 B C = B 1 C
13 12 oveq2d A B C C 0 A B C = A B 1 C
14 3 9 13 3eqtr4d A B C C 0 A B C = A B C