Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
divass
Next ⟩
div23
Metamath Proof Explorer
Ascii
Unicode
Theorem
divass
Description:
An associative law for division.
(Contributed by
NM
, 2-Aug-2004)
Ref
Expression
Assertion
divass
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
→
A
⁢
B
C
=
A
⁢
B
C
Proof
Step
Hyp
Ref
Expression
1
reccl
⊢
C
∈
ℂ
∧
C
≠
0
→
1
C
∈
ℂ
2
mulass
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
1
C
∈
ℂ
→
A
⁢
B
⁢
1
C
=
A
⁢
B
⁢
1
C
3
1
2
syl3an3
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
→
A
⁢
B
⁢
1
C
=
A
⁢
B
⁢
1
C
4
mulcl
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
⁢
B
∈
ℂ
5
4
3adant3
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
→
A
⁢
B
∈
ℂ
6
simp3l
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
→
C
∈
ℂ
7
simp3r
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
→
C
≠
0
8
divrec
⊢
A
⁢
B
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
→
A
⁢
B
C
=
A
⁢
B
⁢
1
C
9
5
6
7
8
syl3anc
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
→
A
⁢
B
C
=
A
⁢
B
⁢
1
C
10
simp2
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
→
B
∈
ℂ
11
divrec
⊢
B
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
→
B
C
=
B
⁢
1
C
12
10
6
7
11
syl3anc
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
→
B
C
=
B
⁢
1
C
13
12
oveq2d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
→
A
⁢
B
C
=
A
⁢
B
⁢
1
C
14
3
9
13
3eqtr4d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
→
A
⁢
B
C
=
A
⁢
B
C