Metamath Proof Explorer


Theorem divassi

Description: An associative law for division. (Contributed by NM, 15-Feb-1995)

Ref Expression
Hypotheses divclz.1 A
divclz.2 B
divmulz.3 C
divass.4 C 0
Assertion divassi A B C = A B C

Proof

Step Hyp Ref Expression
1 divclz.1 A
2 divclz.2 B
3 divmulz.3 C
4 divass.4 C 0
5 1 2 3 divasszi C 0 A B C = A B C
6 4 5 ax-mp A B C = A B C