Metamath Proof Explorer


Theorem divasszi

Description: An associative law for division. (Contributed by NM, 12-Aug-1999)

Ref Expression
Hypotheses divclz.1 A
divclz.2 B
divmulz.3 C
Assertion divasszi C 0 A B C = A B C

Proof

Step Hyp Ref Expression
1 divclz.1 A
2 divclz.2 B
3 divmulz.3 C
4 divass A B C C 0 A B C = A B C
5 1 2 4 mp3an12 C C 0 A B C = A B C
6 3 5 mpan C 0 A B C = A B C