Metamath Proof Explorer


Theorem divcan1i

Description: A cancellation law for division. (Contributed by NM, 18-May-1999)

Ref Expression
Hypotheses divclz.1 A
divclz.2 B
divcl.3 B 0
Assertion divcan1i A B B = A

Proof

Step Hyp Ref Expression
1 divclz.1 A
2 divclz.2 B
3 divcl.3 B 0
4 1 2 3 divcli A B
5 1 2 3 divcan2i B A B = A
6 2 4 5 mulcomli A B B = A