Metamath Proof Explorer


Theorem divcan2

Description: A cancellation law for division. (Contributed by NM, 3-Feb-2004) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion divcan2 A B B 0 B A B = A

Proof

Step Hyp Ref Expression
1 eqid A B = A B
2 simp1 A B B 0 A
3 divcl A B B 0 A B
4 3simpc A B B 0 B B 0
5 divmul A A B B B 0 A B = A B B A B = A
6 2 3 4 5 syl3anc A B B 0 A B = A B B A B = A
7 1 6 mpbii A B B 0 B A B = A