Metamath Proof Explorer


Theorem divcan2i

Description: A cancellation law for division. (Contributed by NM, 9-Feb-1995)

Ref Expression
Hypotheses divclz.1 A
divclz.2 B
divcl.3 B 0
Assertion divcan2i B A B = A

Proof

Step Hyp Ref Expression
1 divclz.1 A
2 divclz.2 B
3 divcl.3 B 0
4 1 2 divcan2zi B 0 B A B = A
5 3 4 ax-mp B A B = A