Metamath Proof Explorer


Theorem divcan2zi

Description: A cancellation law for division. (Contributed by NM, 10-Aug-1999)

Ref Expression
Hypotheses divclz.1 A
divclz.2 B
Assertion divcan2zi B 0 B A B = A

Proof

Step Hyp Ref Expression
1 divclz.1 A
2 divclz.2 B
3 divcan2 A B B 0 B A B = A
4 1 2 3 mp3an12 B 0 B A B = A