Metamath Proof Explorer


Theorem divcan3

Description: A cancellation law for division. (Contributed by NM, 3-Feb-2004) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion divcan3 A B B 0 B A B = A

Proof

Step Hyp Ref Expression
1 eqid B A = B A
2 simp2 A B B 0 B
3 simp1 A B B 0 A
4 2 3 mulcld A B B 0 B A
5 3simpc A B B 0 B B 0
6 divmul B A A B B 0 B A B = A B A = B A
7 4 3 5 6 syl3anc A B B 0 B A B = A B A = B A
8 1 7 mpbiri A B B 0 B A B = A