Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
divcan4
Next ⟩
div11
Metamath Proof Explorer
Ascii
Unicode
Theorem
divcan4
Description:
A cancellation law for division.
(Contributed by
NM
, 8-Feb-2005)
Ref
Expression
Assertion
divcan4
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
A
⁢
B
B
=
A
Proof
Step
Hyp
Ref
Expression
1
mulcom
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
⁢
B
=
B
⁢
A
2
1
3adant3
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
A
⁢
B
=
B
⁢
A
3
2
oveq1d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
A
⁢
B
B
=
B
⁢
A
B
4
divcan3
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
B
⁢
A
B
=
A
5
3
4
eqtrd
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
A
⁢
B
B
=
A