Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
divcan5
Next ⟩
divmul13
Metamath Proof Explorer
Ascii
Unicode
Theorem
divcan5
Description:
Cancellation of common factor in a ratio.
(Contributed by
NM
, 9-Jan-2006)
Ref
Expression
Assertion
divcan5
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
∧
C
∈
ℂ
∧
C
≠
0
→
C
⁢
A
C
⁢
B
=
A
B
Proof
Step
Hyp
Ref
Expression
1
divid
⊢
C
∈
ℂ
∧
C
≠
0
→
C
C
=
1
2
1
oveq1d
⊢
C
∈
ℂ
∧
C
≠
0
→
C
C
⁢
A
B
=
1
⁢
A
B
3
2
3ad2ant3
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
∧
C
∈
ℂ
∧
C
≠
0
→
C
C
⁢
A
B
=
1
⁢
A
B
4
simp3l
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
∧
C
∈
ℂ
∧
C
≠
0
→
C
∈
ℂ
5
simp1
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
∧
C
∈
ℂ
∧
C
≠
0
→
A
∈
ℂ
6
simp3
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
∧
C
∈
ℂ
∧
C
≠
0
→
C
∈
ℂ
∧
C
≠
0
7
simp2
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
∧
C
∈
ℂ
∧
C
≠
0
→
B
∈
ℂ
∧
B
≠
0
8
divmuldiv
⊢
C
∈
ℂ
∧
A
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
C
C
⁢
A
B
=
C
⁢
A
C
⁢
B
9
4
5
6
7
8
syl22anc
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
∧
C
∈
ℂ
∧
C
≠
0
→
C
C
⁢
A
B
=
C
⁢
A
C
⁢
B
10
divcl
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
A
B
∈
ℂ
11
10
3expb
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
A
B
∈
ℂ
12
11
mulid2d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
1
⁢
A
B
=
A
B
13
12
3adant3
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
∧
C
∈
ℂ
∧
C
≠
0
→
1
⁢
A
B
=
A
B
14
3
9
13
3eqtr3d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
∧
C
∈
ℂ
∧
C
≠
0
→
C
⁢
A
C
⁢
B
=
A
B