Metamath Proof Explorer


Theorem divcan5

Description: Cancellation of common factor in a ratio. (Contributed by NM, 9-Jan-2006)

Ref Expression
Assertion divcan5 A B B 0 C C 0 C A C B = A B

Proof

Step Hyp Ref Expression
1 divid C C 0 C C = 1
2 1 oveq1d C C 0 C C A B = 1 A B
3 2 3ad2ant3 A B B 0 C C 0 C C A B = 1 A B
4 simp3l A B B 0 C C 0 C
5 simp1 A B B 0 C C 0 A
6 simp3 A B B 0 C C 0 C C 0
7 simp2 A B B 0 C C 0 B B 0
8 divmuldiv C A C C 0 B B 0 C C A B = C A C B
9 4 5 6 7 8 syl22anc A B B 0 C C 0 C C A B = C A C B
10 divcl A B B 0 A B
11 10 3expb A B B 0 A B
12 11 mulid2d A B B 0 1 A B = A B
13 12 3adant3 A B B 0 C C 0 1 A B = A B
14 3 9 13 3eqtr3d A B B 0 C C 0 C A C B = A B