Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
divcan5rd
Next ⟩
divcan7d
Metamath Proof Explorer
Ascii
Unicode
Theorem
divcan5rd
Description:
Cancellation of common factor in a ratio.
(Contributed by
Mario Carneiro
, 1-Jan-2017)
Ref
Expression
Hypotheses
div1d.1
⊢
φ
→
A
∈
ℂ
divcld.2
⊢
φ
→
B
∈
ℂ
divmuld.3
⊢
φ
→
C
∈
ℂ
divmuld.4
⊢
φ
→
B
≠
0
divdiv23d.5
⊢
φ
→
C
≠
0
Assertion
divcan5rd
⊢
φ
→
A
⁢
C
B
⁢
C
=
A
B
Proof
Step
Hyp
Ref
Expression
1
div1d.1
⊢
φ
→
A
∈
ℂ
2
divcld.2
⊢
φ
→
B
∈
ℂ
3
divmuld.3
⊢
φ
→
C
∈
ℂ
4
divmuld.4
⊢
φ
→
B
≠
0
5
divdiv23d.5
⊢
φ
→
C
≠
0
6
1
3
mulcomd
⊢
φ
→
A
⁢
C
=
C
⁢
A
7
2
3
mulcomd
⊢
φ
→
B
⁢
C
=
C
⁢
B
8
6
7
oveq12d
⊢
φ
→
A
⁢
C
B
⁢
C
=
C
⁢
A
C
⁢
B
9
1
2
3
4
5
divcan5d
⊢
φ
→
C
⁢
A
C
⁢
B
=
A
B
10
8
9
eqtrd
⊢
φ
→
A
⁢
C
B
⁢
C
=
A
B