Metamath Proof Explorer


Theorem divcan5rd

Description: Cancellation of common factor in a ratio. (Contributed by Mario Carneiro, 1-Jan-2017)

Ref Expression
Hypotheses div1d.1 φ A
divcld.2 φ B
divmuld.3 φ C
divmuld.4 φ B 0
divdiv23d.5 φ C 0
Assertion divcan5rd φ A C B C = A B

Proof

Step Hyp Ref Expression
1 div1d.1 φ A
2 divcld.2 φ B
3 divmuld.3 φ C
4 divmuld.4 φ B 0
5 divdiv23d.5 φ C 0
6 1 3 mulcomd φ A C = C A
7 2 3 mulcomd φ B C = C B
8 6 7 oveq12d φ A C B C = C A C B
9 1 2 3 4 5 divcan5d φ C A C B = A B
10 8 9 eqtrd φ A C B C = A B