Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
divcan6
Next ⟩
divdiv32
Metamath Proof Explorer
Ascii
Unicode
Theorem
divcan6
Description:
Cancellation of inverted fractions.
(Contributed by
NM
, 28-Dec-2007)
Ref
Expression
Assertion
divcan6
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
A
B
⁢
B
A
=
1
Proof
Step
Hyp
Ref
Expression
1
recdiv
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
1
A
B
=
B
A
2
1
oveq2d
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
A
B
⁢
1
A
B
=
A
B
⁢
B
A
3
divcl
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
A
B
∈
ℂ
4
3
3expb
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
A
B
∈
ℂ
5
4
adantlr
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
A
B
∈
ℂ
6
divne0
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
A
B
≠
0
7
recid
⊢
A
B
∈
ℂ
∧
A
B
≠
0
→
A
B
⁢
1
A
B
=
1
8
5
6
7
syl2anc
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
A
B
⁢
1
A
B
=
1
9
2
8
eqtr3d
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
A
B
⁢
B
A
=
1