Metamath Proof Explorer


Theorem divcan6

Description: Cancellation of inverted fractions. (Contributed by NM, 28-Dec-2007)

Ref Expression
Assertion divcan6 A A 0 B B 0 A B B A = 1

Proof

Step Hyp Ref Expression
1 recdiv A A 0 B B 0 1 A B = B A
2 1 oveq2d A A 0 B B 0 A B 1 A B = A B B A
3 divcl A B B 0 A B
4 3 3expb A B B 0 A B
5 4 adantlr A A 0 B B 0 A B
6 divne0 A A 0 B B 0 A B 0
7 recid A B A B 0 A B 1 A B = 1
8 5 6 7 syl2anc A A 0 B B 0 A B 1 A B = 1
9 2 8 eqtr3d A A 0 B B 0 A B B A = 1