Metamath Proof Explorer


Theorem divcan7

Description: Cancel equal divisors in a division. (Contributed by Jeff Hankins, 29-Sep-2013)

Ref Expression
Assertion divcan7 ABB0CC0ACBC=AB

Proof

Step Hyp Ref Expression
1 divdivdiv ACC0BB0CC0ACBC=ACCB
2 1 3impdir ABB0CC0ACBC=ACCB
3 mulcom ACAC=CA
4 3 adantrr ACC0AC=CA
5 4 3adant2 ABB0CC0AC=CA
6 5 oveq1d ABB0CC0ACCB=CACB
7 divcan5 ABB0CC0CACB=AB
8 2 6 7 3eqtrd ABB0CC0ACBC=AB