Metamath Proof Explorer


Theorem divcan7

Description: Cancel equal divisors in a division. (Contributed by Jeff Hankins, 29-Sep-2013)

Ref Expression
Assertion divcan7 A B B 0 C C 0 A C B C = A B

Proof

Step Hyp Ref Expression
1 divdivdiv A C C 0 B B 0 C C 0 A C B C = A C C B
2 1 3impdir A B B 0 C C 0 A C B C = A C C B
3 mulcom A C A C = C A
4 3 adantrr A C C 0 A C = C A
5 4 3adant2 A B B 0 C C 0 A C = C A
6 5 oveq1d A B B 0 C C 0 A C C B = C A C B
7 divcan5 A B B 0 C C 0 C A C B = A B
8 2 6 7 3eqtrd A B B 0 C C 0 A C B C = A B