Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
divcan7
Next ⟩
dmdcan
Metamath Proof Explorer
Ascii
Unicode
Theorem
divcan7
Description:
Cancel equal divisors in a division.
(Contributed by
Jeff Hankins
, 29-Sep-2013)
Ref
Expression
Assertion
divcan7
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
∧
C
∈
ℂ
∧
C
≠
0
→
A
C
B
C
=
A
B
Proof
Step
Hyp
Ref
Expression
1
divdivdiv
⊢
A
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
∧
B
∈
ℂ
∧
B
≠
0
∧
C
∈
ℂ
∧
C
≠
0
→
A
C
B
C
=
A
⁢
C
C
⁢
B
2
1
3impdir
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
∧
C
∈
ℂ
∧
C
≠
0
→
A
C
B
C
=
A
⁢
C
C
⁢
B
3
mulcom
⊢
A
∈
ℂ
∧
C
∈
ℂ
→
A
⁢
C
=
C
⁢
A
4
3
adantrr
⊢
A
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
→
A
⁢
C
=
C
⁢
A
5
4
3adant2
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
∧
C
∈
ℂ
∧
C
≠
0
→
A
⁢
C
=
C
⁢
A
6
5
oveq1d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
∧
C
∈
ℂ
∧
C
≠
0
→
A
⁢
C
C
⁢
B
=
C
⁢
A
C
⁢
B
7
divcan5
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
∧
C
∈
ℂ
∧
C
≠
0
→
C
⁢
A
C
⁢
B
=
A
B
8
2
6
7
3eqtrd
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
∧
C
∈
ℂ
∧
C
≠
0
→
A
C
B
C
=
A
B