Metamath Proof Explorer


Theorem divcan7d

Description: Cancel equal divisors in a division. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses div1d.1 φ A
divcld.2 φ B
divmuld.3 φ C
divmuld.4 φ B 0
divdiv23d.5 φ C 0
Assertion divcan7d φ A C B C = A B

Proof

Step Hyp Ref Expression
1 div1d.1 φ A
2 divcld.2 φ B
3 divmuld.3 φ C
4 divmuld.4 φ B 0
5 divdiv23d.5 φ C 0
6 divcan7 A B B 0 C C 0 A C B C = A B
7 1 2 4 3 5 6 syl122anc φ A C B C = A B