Metamath Proof Explorer


Theorem divcan8d

Description: A cancellation law for division. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses divcan8d.a φ A
divcan8d.b φ B
divcan8d.a0 φ A 0
divcan8d.b0 φ B 0
Assertion divcan8d φ B A B = 1 A

Proof

Step Hyp Ref Expression
1 divcan8d.a φ A
2 divcan8d.b φ B
3 divcan8d.a0 φ A 0
4 divcan8d.b0 φ B 0
5 1 2 mulcld φ A B
6 1 2 3 4 mulne0d φ A B 0
7 1 2 6 mulne0bbd φ B 0
8 2 5 2 6 7 divcan7d φ B B A B B = B A B
9 8 eqcomd φ B A B = B B A B B
10 2 4 dividd φ B B = 1
11 1 2 4 divcan4d φ A B B = A
12 10 11 oveq12d φ B B A B B = 1 A
13 eqidd φ 1 A = 1 A
14 9 12 13 3eqtrd φ B A B = 1 A