Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Ordering on real numbers - Real and complex numbers basic operations
divcan8d
Next ⟩
dmmcand
Metamath Proof Explorer
Ascii
Unicode
Theorem
divcan8d
Description:
A cancellation law for division.
(Contributed by
Glauco Siliprandi
, 5-Apr-2020)
Ref
Expression
Hypotheses
divcan8d.a
⊢
φ
→
A
∈
ℂ
divcan8d.b
⊢
φ
→
B
∈
ℂ
divcan8d.a0
⊢
φ
→
A
≠
0
divcan8d.b0
⊢
φ
→
B
≠
0
Assertion
divcan8d
⊢
φ
→
B
A
⁢
B
=
1
A
Proof
Step
Hyp
Ref
Expression
1
divcan8d.a
⊢
φ
→
A
∈
ℂ
2
divcan8d.b
⊢
φ
→
B
∈
ℂ
3
divcan8d.a0
⊢
φ
→
A
≠
0
4
divcan8d.b0
⊢
φ
→
B
≠
0
5
1
2
mulcld
⊢
φ
→
A
⁢
B
∈
ℂ
6
1
2
3
4
mulne0d
⊢
φ
→
A
⁢
B
≠
0
7
1
2
6
mulne0bbd
⊢
φ
→
B
≠
0
8
2
5
2
6
7
divcan7d
⊢
φ
→
B
B
A
⁢
B
B
=
B
A
⁢
B
9
8
eqcomd
⊢
φ
→
B
A
⁢
B
=
B
B
A
⁢
B
B
10
2
4
dividd
⊢
φ
→
B
B
=
1
11
1
2
4
divcan4d
⊢
φ
→
A
⁢
B
B
=
A
12
10
11
oveq12d
⊢
φ
→
B
B
A
⁢
B
B
=
1
A
13
eqidd
⊢
φ
→
1
A
=
1
A
14
9
12
13
3eqtrd
⊢
φ
→
B
A
⁢
B
=
1
A