| Step |
Hyp |
Ref |
Expression |
| 1 |
|
addcn.j |
|
| 2 |
|
divcnOLD.k |
|
| 3 |
|
df-div |
|
| 4 |
|
eldifsn |
|
| 5 |
|
divval |
|
| 6 |
|
divrec |
|
| 7 |
5 6
|
eqtr3d |
|
| 8 |
7
|
3expb |
|
| 9 |
4 8
|
sylan2b |
|
| 10 |
9
|
mpoeq3ia |
|
| 11 |
3 10
|
eqtri |
|
| 12 |
1
|
cnfldtopon |
|
| 13 |
12
|
a1i |
|
| 14 |
|
difss |
|
| 15 |
|
resttopon |
|
| 16 |
13 14 15
|
sylancl |
|
| 17 |
2 16
|
eqeltrid |
|
| 18 |
13 17
|
cnmpt1st |
|
| 19 |
13 17
|
cnmpt2nd |
|
| 20 |
|
eqid |
|
| 21 |
|
eldifsn |
|
| 22 |
|
reccl |
|
| 23 |
21 22
|
sylbi |
|
| 24 |
20 23
|
fmpti |
|
| 25 |
|
eqid |
|
| 26 |
25
|
reccn2 |
|
| 27 |
|
ovres |
|
| 28 |
|
eldifi |
|
| 29 |
|
eldifi |
|
| 30 |
|
eqid |
|
| 31 |
30
|
cnmetdval |
|
| 32 |
|
abssub |
|
| 33 |
31 32
|
eqtrd |
|
| 34 |
28 29 33
|
syl2an |
|
| 35 |
27 34
|
eqtrd |
|
| 36 |
35
|
breq1d |
|
| 37 |
|
oveq2 |
|
| 38 |
|
ovex |
|
| 39 |
37 20 38
|
fvmpt |
|
| 40 |
|
oveq2 |
|
| 41 |
|
ovex |
|
| 42 |
40 20 41
|
fvmpt |
|
| 43 |
39 42
|
oveqan12d |
|
| 44 |
|
eldifsn |
|
| 45 |
|
reccl |
|
| 46 |
44 45
|
sylbi |
|
| 47 |
|
eldifsn |
|
| 48 |
|
reccl |
|
| 49 |
47 48
|
sylbi |
|
| 50 |
30
|
cnmetdval |
|
| 51 |
|
abssub |
|
| 52 |
50 51
|
eqtrd |
|
| 53 |
46 49 52
|
syl2an |
|
| 54 |
43 53
|
eqtrd |
|
| 55 |
54
|
breq1d |
|
| 56 |
36 55
|
imbi12d |
|
| 57 |
56
|
ralbidva |
|
| 58 |
57
|
rexbidv |
|
| 59 |
58
|
adantr |
|
| 60 |
26 59
|
mpbird |
|
| 61 |
60
|
rgen2 |
|
| 62 |
|
cnxmet |
|
| 63 |
|
xmetres2 |
|
| 64 |
62 14 63
|
mp2an |
|
| 65 |
|
eqid |
|
| 66 |
1
|
cnfldtopn |
|
| 67 |
|
eqid |
|
| 68 |
65 66 67
|
metrest |
|
| 69 |
62 14 68
|
mp2an |
|
| 70 |
2 69
|
eqtri |
|
| 71 |
70 66
|
metcn |
|
| 72 |
64 62 71
|
mp2an |
|
| 73 |
24 61 72
|
mpbir2an |
|
| 74 |
73
|
a1i |
|
| 75 |
|
oveq2 |
|
| 76 |
13 17 19 17 74 75
|
cnmpt21 |
|
| 77 |
1
|
mulcn |
|
| 78 |
77
|
a1i |
|
| 79 |
13 17 18 76 78
|
cnmpt22f |
|
| 80 |
79
|
mptru |
|
| 81 |
11 80
|
eqeltri |
|