Step |
Hyp |
Ref |
Expression |
1 |
|
divcncf.1 |
|
2 |
|
divcncf.2 |
|
3 |
|
cncff |
|
4 |
1 3
|
syl |
|
5 |
4
|
fvmptelrn |
|
6 |
|
cncff |
|
7 |
2 6
|
syl |
|
8 |
7
|
fvmptelrn |
|
9 |
8
|
eldifad |
|
10 |
|
eldifsni |
|
11 |
8 10
|
syl |
|
12 |
5 9 11
|
divrecd |
|
13 |
12
|
mpteq2dva |
|
14 |
8
|
ralrimiva |
|
15 |
|
eqidd |
|
16 |
|
eqidd |
|
17 |
14 15 16
|
fmptcos |
|
18 |
|
csbov2g |
|
19 |
9 18
|
syl |
|
20 |
|
csbvarg |
|
21 |
9 20
|
syl |
|
22 |
21
|
oveq2d |
|
23 |
19 22
|
eqtrd |
|
24 |
23
|
mpteq2dva |
|
25 |
17 24
|
eqtr2d |
|
26 |
|
ax-1cn |
|
27 |
|
eqid |
|
28 |
27
|
cdivcncf |
|
29 |
26 28
|
mp1i |
|
30 |
2 29
|
cncfco |
|
31 |
25 30
|
eqeltrd |
|
32 |
1 31
|
mulcncf |
|
33 |
13 32
|
eqeltrd |
|