Metamath Proof Explorer


Theorem divcnvg

Description: The sequence of reciprocals of positive integers, multiplied by the factor A , converges to zero. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion divcnvg A M n M A n 0

Proof

Step Hyp Ref Expression
1 eluznn M n M n
2 eqidd n m A m = m A m
3 oveq2 m = n A m = A n
4 3 adantl n m = n A m = A n
5 id n n
6 ovexd n A n V
7 2 4 5 6 fvmptd n m A m n = A n
8 7 eqcomd n A n = m A m n
9 1 8 syl M n M A n = m A m n
10 9 adantll A M n M A n = m A m n
11 10 mpteq2dva A M n M A n = n M m A m n
12 divcnv A m A m 0
13 12 adantr A M m A m 0
14 simpr A M M
15 14 nnzd A M M
16 nnex V
17 16 mptex m A m V
18 eqid M = M
19 eqid n M m A m n = n M m A m n
20 18 19 climmpt M m A m V m A m 0 n M m A m n 0
21 15 17 20 sylancl A M m A m 0 n M m A m n 0
22 13 21 mpbid A M n M m A m n 0
23 11 22 eqbrtrd A M n M A n 0