Metamath Proof Explorer


Theorem divcnvshft

Description: Limit of a ratio function. (Contributed by Scott Fenton, 16-Dec-2017)

Ref Expression
Hypotheses divcnvshft.1 Z = M
divcnvshft.2 φ M
divcnvshft.3 φ A
divcnvshft.4 φ B
divcnvshft.5 φ F V
divcnvshft.6 φ k Z F k = A k + B
Assertion divcnvshft φ F 0

Proof

Step Hyp Ref Expression
1 divcnvshft.1 Z = M
2 divcnvshft.2 φ M
3 divcnvshft.3 φ A
4 divcnvshft.4 φ B
5 divcnvshft.5 φ F V
6 divcnvshft.6 φ k Z F k = A k + B
7 divcnv A m A m 0
8 3 7 syl φ m A m 0
9 nnssz
10 resmpt m A m = m A m
11 9 10 ax-mp m A m = m A m
12 nnuz = 1
13 12 reseq2i m A m = m A m 1
14 11 13 eqtr3i m A m = m A m 1
15 14 breq1i m A m 0 m A m 1 0
16 1z 1
17 zex V
18 17 mptex m A m V
19 climres 1 m A m V m A m 1 0 m A m 0
20 16 18 19 mp2an m A m 1 0 m A m 0
21 15 20 bitri m A m 0 m A m 0
22 8 21 sylib φ m A m 0
23 18 a1i φ m A m V
24 uzssz M
25 1 24 eqsstri Z
26 25 sseli k Z k
27 26 adantl φ k Z k
28 4 adantr φ k Z B
29 27 28 zaddcld φ k Z k + B
30 oveq2 m = k + B A m = A k + B
31 eqid m A m = m A m
32 ovex A k + B V
33 30 31 32 fvmpt k + B m A m k + B = A k + B
34 29 33 syl φ k Z m A m k + B = A k + B
35 34 6 eqtr4d φ k Z m A m k + B = F k
36 1 2 4 5 23 35 climshft2 φ F 0 m A m 0
37 22 36 mpbird φ F 0