Metamath Proof Explorer


Theorem divconjdvds

Description: If a nonzero integer M divides another integer N , the other integer N divided by the nonzero integer M (i.e. thedivisor conjugate of N to M ) divides the other integer N . Theorem 1.1(k) in ApostolNT p. 14. (Contributed by AV, 7-Aug-2021)

Ref Expression
Assertion divconjdvds M N M 0 N M N

Proof

Step Hyp Ref Expression
1 dvdszrcl M N M N
2 simpll M N M 0 M
3 oveq1 m = M m N M = M N M
4 3 eqeq1d m = M m N M = N M N M = N
5 4 adantl M N M 0 m = M m N M = N M N M = N
6 zcn N N
7 6 adantl M N N
8 7 adantr M N M 0 N
9 zcn M M
10 9 adantr M N M
11 10 adantr M N M 0 M
12 simpr M N M 0 M 0
13 8 11 12 divcan2d M N M 0 M N M = N
14 2 5 13 rspcedvd M N M 0 m m N M = N
15 14 adantr M N M 0 M N m m N M = N
16 simpr M N M 0 M N M N
17 simpr M N N
18 17 adantr M N M 0 N
19 2 12 18 3jca M N M 0 M M 0 N
20 19 adantr M N M 0 M N M M 0 N
21 dvdsval2 M M 0 N M N N M
22 20 21 syl M N M 0 M N M N N M
23 16 22 mpbid M N M 0 M N N M
24 18 adantr M N M 0 M N N
25 divides N M N N M N m m N M = N
26 23 24 25 syl2anc M N M 0 M N N M N m m N M = N
27 15 26 mpbird M N M 0 M N N M N
28 27 exp31 M N M 0 M N N M N
29 28 com3r M N M N M 0 N M N
30 1 29 mpd M N M 0 N M N
31 30 imp M N M 0 N M N