Metamath Proof Explorer


Theorem divcxp

Description: Complex exponentiation of a quotient. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Assertion divcxp A 0 A B + C A B C = A C B C

Proof

Step Hyp Ref Expression
1 simp1l A 0 A B + C A
2 simp1r A 0 A B + C 0 A
3 simp2 A 0 A B + C B +
4 3 rpreccld A 0 A B + C 1 B +
5 4 rpred A 0 A B + C 1 B
6 4 rpge0d A 0 A B + C 0 1 B
7 simp3 A 0 A B + C C
8 mulcxp A 0 A 1 B 0 1 B C A 1 B C = A C 1 B C
9 1 2 5 6 7 8 syl221anc A 0 A B + C A 1 B C = A C 1 B C
10 cxprec B + C 1 B C = 1 B C
11 3 7 10 syl2anc A 0 A B + C 1 B C = 1 B C
12 11 oveq2d A 0 A B + C A C 1 B C = A C 1 B C
13 9 12 eqtrd A 0 A B + C A 1 B C = A C 1 B C
14 1 recnd A 0 A B + C A
15 3 rpcnd A 0 A B + C B
16 3 rpne0d A 0 A B + C B 0
17 14 15 16 divrecd A 0 A B + C A B = A 1 B
18 17 oveq1d A 0 A B + C A B C = A 1 B C
19 cxpcl A C A C
20 14 7 19 syl2anc A 0 A B + C A C
21 cxpcl B C B C
22 15 7 21 syl2anc A 0 A B + C B C
23 cxpne0 B B 0 C B C 0
24 15 16 7 23 syl3anc A 0 A B + C B C 0
25 20 22 24 divrecd A 0 A B + C A C B C = A C 1 B C
26 13 18 25 3eqtr4d A 0 A B + C A B C = A C B C