Metamath Proof Explorer


Theorem divcxpd

Description: Complex exponentiation of a quotient. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses recxpcld.1 φ A
recxpcld.2 φ 0 A
divcxpd.4 φ B +
divcxpd.5 φ C
Assertion divcxpd φ A B C = A C B C

Proof

Step Hyp Ref Expression
1 recxpcld.1 φ A
2 recxpcld.2 φ 0 A
3 divcxpd.4 φ B +
4 divcxpd.5 φ C
5 divcxp A 0 A B + C A B C = A C B C
6 1 2 3 4 5 syl211anc φ A B C = A C B C