Metamath Proof Explorer


Theorem divdenle

Description: Reducing a quotient never increases the denominator. (Contributed by Stefan O'Rear, 13-Sep-2014)

Ref Expression
Assertion divdenle A B denom A B B

Proof

Step Hyp Ref Expression
1 divnumden A B numer A B = A A gcd B denom A B = B A gcd B
2 1 simprd A B denom A B = B A gcd B
3 simpl A B A
4 nnz B B
5 4 adantl A B B
6 nnne0 B B 0
7 6 neneqd B ¬ B = 0
8 7 adantl A B ¬ B = 0
9 8 intnand A B ¬ A = 0 B = 0
10 gcdn0cl A B ¬ A = 0 B = 0 A gcd B
11 3 5 9 10 syl21anc A B A gcd B
12 11 nnge1d A B 1 A gcd B
13 1red A B 1
14 0lt1 0 < 1
15 14 a1i A B 0 < 1
16 11 nnred A B A gcd B
17 11 nngt0d A B 0 < A gcd B
18 nnre B B
19 18 adantl A B B
20 nngt0 B 0 < B
21 20 adantl A B 0 < B
22 lediv2 1 0 < 1 A gcd B 0 < A gcd B B 0 < B 1 A gcd B B A gcd B B 1
23 13 15 16 17 19 21 22 syl222anc A B 1 A gcd B B A gcd B B 1
24 12 23 mpbid A B B A gcd B B 1
25 nncn B B
26 25 adantl A B B
27 26 div1d A B B 1 = B
28 24 27 breqtrd A B B A gcd B B
29 2 28 eqbrtrd A B denom A B B