Metamath Proof Explorer


Theorem divdir

Description: Distribution of division over addition. (Contributed by NM, 31-Jul-2004) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion divdir A B C C 0 A + B C = A C + B C

Proof

Step Hyp Ref Expression
1 simp1 A B C C 0 A
2 simp2 A B C C 0 B
3 reccl C C 0 1 C
4 3 3ad2ant3 A B C C 0 1 C
5 1 2 4 adddird A B C C 0 A + B 1 C = A 1 C + B 1 C
6 1 2 addcld A B C C 0 A + B
7 simp3l A B C C 0 C
8 simp3r A B C C 0 C 0
9 divrec A + B C C 0 A + B C = A + B 1 C
10 6 7 8 9 syl3anc A B C C 0 A + B C = A + B 1 C
11 divrec A C C 0 A C = A 1 C
12 1 7 8 11 syl3anc A B C C 0 A C = A 1 C
13 divrec B C C 0 B C = B 1 C
14 2 7 8 13 syl3anc A B C C 0 B C = B 1 C
15 12 14 oveq12d A B C C 0 A C + B C = A 1 C + B 1 C
16 5 10 15 3eqtr4d A B C C 0 A + B C = A C + B C