Metamath Proof Explorer


Theorem divdiri

Description: Distribution of division over addition. (Contributed by NM, 16-Feb-1995)

Ref Expression
Hypotheses divclz.1 A
divclz.2 B
divmulz.3 C
divass.4 C 0
Assertion divdiri A + B C = A C + B C

Proof

Step Hyp Ref Expression
1 divclz.1 A
2 divclz.2 B
3 divmulz.3 C
4 divass.4 C 0
5 1 2 3 divdirzi C 0 A + B C = A C + B C
6 4 5 ax-mp A + B C = A C + B C