Metamath Proof Explorer


Theorem divdirzi

Description: Distribution of division over addition. (Contributed by NM, 31-Jul-2004)

Ref Expression
Hypotheses divclz.1 A
divclz.2 B
divmulz.3 C
Assertion divdirzi C 0 A + B C = A C + B C

Proof

Step Hyp Ref Expression
1 divclz.1 A
2 divclz.2 B
3 divmulz.3 C
4 divdir A B C C 0 A + B C = A C + B C
5 1 2 4 mp3an12 C C 0 A + B C = A C + B C
6 3 5 mpan C 0 A + B C = A C + B C