Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
divdiv1
Next ⟩
divdiv2
Metamath Proof Explorer
Ascii
Unicode
Theorem
divdiv1
Description:
Division into a fraction.
(Contributed by
NM
, 31-Dec-2007)
Ref
Expression
Assertion
divdiv1
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
∧
C
∈
ℂ
∧
C
≠
0
→
A
B
C
=
A
B
⁢
C
Proof
Step
Hyp
Ref
Expression
1
ax-1cn
⊢
1
∈
ℂ
2
ax-1ne0
⊢
1
≠
0
3
1
2
pm3.2i
⊢
1
∈
ℂ
∧
1
≠
0
4
divdivdiv
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
∧
C
∈
ℂ
∧
C
≠
0
∧
1
∈
ℂ
∧
1
≠
0
→
A
B
C
1
=
A
⋅
1
B
⁢
C
5
3
4
mpanr2
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
∧
C
∈
ℂ
∧
C
≠
0
→
A
B
C
1
=
A
⋅
1
B
⁢
C
6
5
3impa
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
∧
C
∈
ℂ
∧
C
≠
0
→
A
B
C
1
=
A
⋅
1
B
⁢
C
7
div1
⊢
C
∈
ℂ
→
C
1
=
C
8
7
oveq2d
⊢
C
∈
ℂ
→
A
B
C
1
=
A
B
C
9
8
ad2antrl
⊢
B
∈
ℂ
∧
B
≠
0
∧
C
∈
ℂ
∧
C
≠
0
→
A
B
C
1
=
A
B
C
10
9
3adant1
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
∧
C
∈
ℂ
∧
C
≠
0
→
A
B
C
1
=
A
B
C
11
mulid1
⊢
A
∈
ℂ
→
A
⋅
1
=
A
12
11
oveq1d
⊢
A
∈
ℂ
→
A
⋅
1
B
⁢
C
=
A
B
⁢
C
13
12
3ad2ant1
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
∧
C
∈
ℂ
∧
C
≠
0
→
A
⋅
1
B
⁢
C
=
A
B
⁢
C
14
6
10
13
3eqtr3d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
∧
C
∈
ℂ
∧
C
≠
0
→
A
B
C
=
A
B
⁢
C