Metamath Proof Explorer


Theorem divdiv1

Description: Division into a fraction. (Contributed by NM, 31-Dec-2007)

Ref Expression
Assertion divdiv1 A B B 0 C C 0 A B C = A B C

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 ax-1ne0 1 0
3 1 2 pm3.2i 1 1 0
4 divdivdiv A B B 0 C C 0 1 1 0 A B C 1 = A 1 B C
5 3 4 mpanr2 A B B 0 C C 0 A B C 1 = A 1 B C
6 5 3impa A B B 0 C C 0 A B C 1 = A 1 B C
7 div1 C C 1 = C
8 7 oveq2d C A B C 1 = A B C
9 8 ad2antrl B B 0 C C 0 A B C 1 = A B C
10 9 3adant1 A B B 0 C C 0 A B C 1 = A B C
11 mulid1 A A 1 = A
12 11 oveq1d A A 1 B C = A B C
13 12 3ad2ant1 A B B 0 C C 0 A 1 B C = A B C
14 6 10 13 3eqtr3d A B B 0 C C 0 A B C = A B C