Metamath Proof Explorer


Theorem divdiv2

Description: Division by a fraction. (Contributed by NM, 27-Dec-2008)

Ref Expression
Assertion divdiv2 A B B 0 C C 0 A B C = A C B

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 ax-1ne0 1 0
3 1 2 pm3.2i 1 1 0
4 divdivdiv A 1 1 0 B B 0 C C 0 A 1 B C = A C 1 B
5 3 4 mpanl2 A B B 0 C C 0 A 1 B C = A C 1 B
6 5 3impb A B B 0 C C 0 A 1 B C = A C 1 B
7 div1 A A 1 = A
8 7 3ad2ant1 A B B 0 C C 0 A 1 = A
9 8 oveq1d A B B 0 C C 0 A 1 B C = A B C
10 mulid2 B 1 B = B
11 10 ad2antrl A B B 0 1 B = B
12 11 3adant3 A B B 0 C C 0 1 B = B
13 12 oveq2d A B B 0 C C 0 A C 1 B = A C B
14 6 9 13 3eqtr3d A B B 0 C C 0 A B C = A C B