Metamath Proof Explorer


Theorem divdiv23zi

Description: Swap denominators in a division. (Contributed by NM, 15-Sep-1999)

Ref Expression
Hypotheses divclz.1 A
divclz.2 B
divmulz.3 C
Assertion divdiv23zi B 0 C 0 A B C = A C B

Proof

Step Hyp Ref Expression
1 divclz.1 A
2 divclz.2 B
3 divmulz.3 C
4 divdiv32 A B B 0 C C 0 A B C = A C B
5 1 4 mp3an1 B B 0 C C 0 A B C = A C B
6 3 5 mpanr1 B B 0 C 0 A B C = A C B
7 2 6 mpanl1 B 0 C 0 A B C = A C B