Metamath Proof Explorer


Theorem divdiv32

Description: Swap denominators in a division. (Contributed by NM, 2-Aug-2004)

Ref Expression
Assertion divdiv32 A B B 0 C C 0 A B C = A C B

Proof

Step Hyp Ref Expression
1 reccl B B 0 1 B
2 div23 A 1 B C C 0 A 1 B C = A C 1 B
3 1 2 syl3an2 A B B 0 C C 0 A 1 B C = A C 1 B
4 divrec A B B 0 A B = A 1 B
5 4 3expb A B B 0 A B = A 1 B
6 5 3adant3 A B B 0 C C 0 A B = A 1 B
7 6 oveq1d A B B 0 C C 0 A B C = A 1 B C
8 divcl A C C 0 A C
9 8 3expb A C C 0 A C
10 divrec A C B B 0 A C B = A C 1 B
11 9 10 syl3an1 A C C 0 B B 0 A C B = A C 1 B
12 11 3expb A C C 0 B B 0 A C B = A C 1 B
13 12 3impa A C C 0 B B 0 A C B = A C 1 B
14 13 3com23 A B B 0 C C 0 A C B = A C 1 B
15 3 7 14 3eqtr4d A B B 0 C C 0 A B C = A C B