Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
divdiv32
Next ⟩
divcan7
Metamath Proof Explorer
Ascii
Unicode
Theorem
divdiv32
Description:
Swap denominators in a division.
(Contributed by
NM
, 2-Aug-2004)
Ref
Expression
Assertion
divdiv32
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
∧
C
∈
ℂ
∧
C
≠
0
→
A
B
C
=
A
C
B
Proof
Step
Hyp
Ref
Expression
1
reccl
⊢
B
∈
ℂ
∧
B
≠
0
→
1
B
∈
ℂ
2
div23
⊢
A
∈
ℂ
∧
1
B
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
→
A
⁢
1
B
C
=
A
C
⁢
1
B
3
1
2
syl3an2
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
∧
C
∈
ℂ
∧
C
≠
0
→
A
⁢
1
B
C
=
A
C
⁢
1
B
4
divrec
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
A
B
=
A
⁢
1
B
5
4
3expb
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
A
B
=
A
⁢
1
B
6
5
3adant3
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
∧
C
∈
ℂ
∧
C
≠
0
→
A
B
=
A
⁢
1
B
7
6
oveq1d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
∧
C
∈
ℂ
∧
C
≠
0
→
A
B
C
=
A
⁢
1
B
C
8
divcl
⊢
A
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
→
A
C
∈
ℂ
9
8
3expb
⊢
A
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
→
A
C
∈
ℂ
10
divrec
⊢
A
C
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
A
C
B
=
A
C
⁢
1
B
11
9
10
syl3an1
⊢
A
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
A
C
B
=
A
C
⁢
1
B
12
11
3expb
⊢
A
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
A
C
B
=
A
C
⁢
1
B
13
12
3impa
⊢
A
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
A
C
B
=
A
C
⁢
1
B
14
13
3com23
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
∧
C
∈
ℂ
∧
C
≠
0
→
A
C
B
=
A
C
⁢
1
B
15
3
7
14
3eqtr4d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
∧
C
∈
ℂ
∧
C
≠
0
→
A
B
C
=
A
C
B