Metamath Proof Explorer


Theorem divdiv32i

Description: Swap denominators in a division. (Contributed by NM, 15-Sep-1999)

Ref Expression
Hypotheses divclz.1 A
divclz.2 B
divmulz.3 C
divmul.4 B 0
divdiv23.5 C 0
Assertion divdiv32i A B C = A C B

Proof

Step Hyp Ref Expression
1 divclz.1 A
2 divclz.2 B
3 divmulz.3 C
4 divmul.4 B 0
5 divdiv23.5 C 0
6 1 2 3 divdiv23zi B 0 C 0 A B C = A C B
7 4 5 6 mp2an A B C = A C B