Metamath Proof Explorer


Theorem divdiv3d

Description: Division into a fraction. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses divdiv3d.1 φ A
divdiv3d.2 φ B
divdiv3d.3 φ C
divdiv3d.4 φ B 0
divdiv3d.5 φ C 0
Assertion divdiv3d φ A B C = A C B

Proof

Step Hyp Ref Expression
1 divdiv3d.1 φ A
2 divdiv3d.2 φ B
3 divdiv3d.3 φ C
4 divdiv3d.4 φ B 0
5 divdiv3d.5 φ C 0
6 1 2 3 4 5 divdiv1d φ A B C = A B C
7 2 3 mulcomd φ B C = C B
8 7 oveq2d φ A B C = A C B
9 6 8 eqtrd φ A B C = A C B