Metamath Proof Explorer


Theorem divdivdiv

Description: Division of two ratios. Theorem I.15 of Apostol p. 18. (Contributed by NM, 2-Aug-2004)

Ref Expression
Assertion divdivdiv A B B 0 C C 0 D D 0 A B C D = A D B C

Proof

Step Hyp Ref Expression
1 simprrl A B B 0 C C 0 D D 0 D
2 simprll A B B 0 C C 0 D D 0 C
3 simprlr A B B 0 C C 0 D D 0 C 0
4 divcl D C C 0 D C
5 1 2 3 4 syl3anc A B B 0 C C 0 D D 0 D C
6 simpll A B B 0 C C 0 D D 0 A
7 simplrl A B B 0 C C 0 D D 0 B
8 simplrr A B B 0 C C 0 D D 0 B 0
9 divcl A B B 0 A B
10 6 7 8 9 syl3anc A B B 0 C C 0 D D 0 A B
11 5 10 mulcomd A B B 0 C C 0 D D 0 D C A B = A B D C
12 simplr A B B 0 C C 0 D D 0 B B 0
13 simprl A B B 0 C C 0 D D 0 C C 0
14 divmuldiv A D B B 0 C C 0 A B D C = A D B C
15 6 1 12 13 14 syl22anc A B B 0 C C 0 D D 0 A B D C = A D B C
16 11 15 eqtrd A B B 0 C C 0 D D 0 D C A B = A D B C
17 16 oveq2d A B B 0 C C 0 D D 0 C D D C A B = C D A D B C
18 simprr A B B 0 C C 0 D D 0 D D 0
19 divmuldiv C D D D 0 C C 0 C D D C = C D D C
20 2 1 18 13 19 syl22anc A B B 0 C C 0 D D 0 C D D C = C D D C
21 2 1 mulcomd A B B 0 C C 0 D D 0 C D = D C
22 21 oveq1d A B B 0 C C 0 D D 0 C D D C = D C D C
23 1 2 mulcld A B B 0 C C 0 D D 0 D C
24 simprrr A B B 0 C C 0 D D 0 D 0
25 1 2 24 3 mulne0d A B B 0 C C 0 D D 0 D C 0
26 divid D C D C 0 D C D C = 1
27 23 25 26 syl2anc A B B 0 C C 0 D D 0 D C D C = 1
28 22 27 eqtrd A B B 0 C C 0 D D 0 C D D C = 1
29 20 28 eqtrd A B B 0 C C 0 D D 0 C D D C = 1
30 29 oveq1d A B B 0 C C 0 D D 0 C D D C A B = 1 A B
31 divcl C D D 0 C D
32 2 1 24 31 syl3anc A B B 0 C C 0 D D 0 C D
33 32 5 10 mulassd A B B 0 C C 0 D D 0 C D D C A B = C D D C A B
34 10 mulid2d A B B 0 C C 0 D D 0 1 A B = A B
35 30 33 34 3eqtr3d A B B 0 C C 0 D D 0 C D D C A B = A B
36 17 35 eqtr3d A B B 0 C C 0 D D 0 C D A D B C = A B
37 6 1 mulcld A B B 0 C C 0 D D 0 A D
38 7 2 mulcld A B B 0 C C 0 D D 0 B C
39 mulne0 B B 0 C C 0 B C 0
40 39 ad2ant2lr A B B 0 C C 0 D D 0 B C 0
41 divcl A D B C B C 0 A D B C
42 37 38 40 41 syl3anc A B B 0 C C 0 D D 0 A D B C
43 divne0 C C 0 D D 0 C D 0
44 43 adantl A B B 0 C C 0 D D 0 C D 0
45 divmul A B A D B C C D C D 0 A B C D = A D B C C D A D B C = A B
46 10 42 32 44 45 syl112anc A B B 0 C C 0 D D 0 A B C D = A D B C C D A D B C = A B
47 36 46 mpbird A B B 0 C C 0 D D 0 A B C D = A D B C