Metamath Proof Explorer


Theorem divdivdivd

Description: Division of two ratios. Theorem I.15 of Apostol p. 18. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses div1d.1 φ A
divcld.2 φ B
divmuld.3 φ C
divmuldivd.4 φ D
divmuldivd.5 φ B 0
divmuldivd.6 φ D 0
divdivdivd.7 φ C 0
Assertion divdivdivd φ A B C D = A D B C

Proof

Step Hyp Ref Expression
1 div1d.1 φ A
2 divcld.2 φ B
3 divmuld.3 φ C
4 divmuldivd.4 φ D
5 divmuldivd.5 φ B 0
6 divmuldivd.6 φ D 0
7 divdivdivd.7 φ C 0
8 2 5 jca φ B B 0
9 3 7 jca φ C C 0
10 4 6 jca φ D D 0
11 divdivdiv A B B 0 C C 0 D D 0 A B C D = A D B C
12 1 8 9 10 11 syl22anc φ A B C D = A D B C