Metamath Proof Explorer


Theorem divdivdivi

Description: Division of two ratios. Theorem I.15 of Apostol p. 18. (Contributed by NM, 22-Feb-1995)

Ref Expression
Hypotheses divclz.1 A
divclz.2 B
divmulz.3 C
divmuldiv.4 D
divmuldiv.5 B 0
divmuldiv.6 D 0
divdivdiv.7 C 0
Assertion divdivdivi A B C D = A D B C

Proof

Step Hyp Ref Expression
1 divclz.1 A
2 divclz.2 B
3 divmulz.3 C
4 divmuldiv.4 D
5 divmuldiv.5 B 0
6 divmuldiv.6 D 0
7 divdivdiv.7 C 0
8 2 5 pm3.2i B B 0
9 3 7 pm3.2i C C 0
10 4 6 pm3.2i D D 0
11 divdivdiv A B B 0 C C 0 D D 0 A B C D = A D B C
12 1 8 9 10 11 mp4an A B C D = A D B C