Metamath Proof Explorer


Theorem divelunit

Description: A condition for a ratio to be a member of the closed unit interval. (Contributed by Scott Fenton, 11-Jun-2013)

Ref Expression
Assertion divelunit A 0 A B 0 < B A B 0 1 A B

Proof

Step Hyp Ref Expression
1 elicc01 A B 0 1 A B 0 A B A B 1
2 df-3an A B 0 A B A B 1 A B 0 A B A B 1
3 1 2 bitri A B 0 1 A B 0 A B A B 1
4 1re 1
5 ledivmul A 1 B 0 < B A B 1 A B 1
6 4 5 mp3an2 A B 0 < B A B 1 A B 1
7 6 adantlr A 0 A B 0 < B A B 1 A B 1
8 simpll A 0 A B 0 < B A
9 simprl A 0 A B 0 < B B
10 gt0ne0 B 0 < B B 0
11 10 adantl A 0 A B 0 < B B 0
12 8 9 11 redivcld A 0 A B 0 < B A B
13 divge0 A 0 A B 0 < B 0 A B
14 12 13 jca A 0 A B 0 < B A B 0 A B
15 14 biantrurd A 0 A B 0 < B A B 1 A B 0 A B A B 1
16 recn B B
17 16 ad2antrl A 0 A B 0 < B B
18 17 mulid1d A 0 A B 0 < B B 1 = B
19 18 breq2d A 0 A B 0 < B A B 1 A B
20 7 15 19 3bitr3d A 0 A B 0 < B A B 0 A B A B 1 A B
21 3 20 syl5bb A 0 A B 0 < B A B 0 1 A B