Metamath Proof Explorer


Theorem diveq0

Description: A ratio is zero iff the numerator is zero. (Contributed by NM, 20-Apr-2006) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion diveq0 A B B 0 A B = 0 A = 0

Proof

Step Hyp Ref Expression
1 simp1 A B B 0 A
2 0cnd A B B 0 0
3 3simpc A B B 0 B B 0
4 divmul2 A 0 B B 0 A B = 0 A = B 0
5 1 2 3 4 syl3anc A B B 0 A B = 0 A = B 0
6 simp2 A B B 0 B
7 6 mul01d A B B 0 B 0 = 0
8 7 eqeq2d A B B 0 A = B 0 A = 0
9 5 8 bitrd A B B 0 A B = 0 A = 0