Metamath Proof Explorer


Theorem diveq0ad

Description: A fraction of complex numbers is zero iff its numerator is. Deduction form of diveq0 . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses div1d.1 φ A
divcld.2 φ B
divcld.3 φ B 0
Assertion diveq0ad φ A B = 0 A = 0

Proof

Step Hyp Ref Expression
1 div1d.1 φ A
2 divcld.2 φ B
3 divcld.3 φ B 0
4 diveq0 A B B 0 A B = 0 A = 0
5 1 2 3 4 syl3anc φ A B = 0 A = 0