Metamath Proof Explorer


Theorem diveq0d

Description: A ratio is zero iff the numerator is zero. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses div1d.1 φ A
divcld.2 φ B
divcld.3 φ B 0
diveq0d.4 φ A B = 0
Assertion diveq0d φ A = 0

Proof

Step Hyp Ref Expression
1 div1d.1 φ A
2 divcld.2 φ B
3 divcld.3 φ B 0
4 diveq0d.4 φ A B = 0
5 diveq0 A B B 0 A B = 0 A = 0
6 1 2 3 5 syl3anc φ A B = 0 A = 0
7 4 6 mpbid φ A = 0