Metamath Proof Explorer


Theorem diveq1

Description: Equality in terms of unit ratio. (Contributed by Stefan O'Rear, 27-Aug-2015)

Ref Expression
Assertion diveq1 A B B 0 A B = 1 A = B

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 divmul2 A 1 B B 0 A B = 1 A = B 1
3 1 2 mp3an2 A B B 0 A B = 1 A = B 1
4 3 3impb A B B 0 A B = 1 A = B 1
5 simp2 A B B 0 B
6 5 mulid1d A B B 0 B 1 = B
7 6 eqeq2d A B B 0 A = B 1 A = B
8 4 7 bitrd A B B 0 A B = 1 A = B