Metamath Proof Explorer


Theorem diveq1ad

Description: The quotient of two complex numbers is one iff they are equal. Deduction form of diveq1 . Generalization of diveq1d . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses div1d.1 φ A
divcld.2 φ B
divcld.3 φ B 0
Assertion diveq1ad φ A B = 1 A = B

Proof

Step Hyp Ref Expression
1 div1d.1 φ A
2 divcld.2 φ B
3 divcld.3 φ B 0
4 diveq1 A B B 0 A B = 1 A = B
5 1 2 3 4 syl3anc φ A B = 1 A = B