Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
diveq1ad
Metamath Proof Explorer
Description: The quotient of two complex numbers is one iff they are equal.
Deduction form of diveq1 . Generalization of diveq1d .
(Contributed by David Moews , 28-Feb-2017)
Ref
Expression
Hypotheses
div1d.1
⊢ φ → A ∈ ℂ
divcld.2
⊢ φ → B ∈ ℂ
divcld.3
⊢ φ → B ≠ 0
Assertion
diveq1ad
⊢ φ → A B = 1 ↔ A = B
Proof
Step
Hyp
Ref
Expression
1
div1d.1
⊢ φ → A ∈ ℂ
2
divcld.2
⊢ φ → B ∈ ℂ
3
divcld.3
⊢ φ → B ≠ 0
4
diveq1
⊢ A ∈ ℂ ∧ B ∈ ℂ ∧ B ≠ 0 → A B = 1 ↔ A = B
5
1 2 3 4
syl3anc
⊢ φ → A B = 1 ↔ A = B